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Ahstrac-The paper presents numerical predictions of various turbulent shear flows in which the 
structure of the viscous sublayer exerts appreciable influence on the flow. The model of turbulence 
employed is one where the turbulence energy and its dissipation rate are calculated by way of transport 
equations which are solved simultaneously with the conservation equations for the mean flow. 

The flows considered include isothermal low Reynolds number pipe flows, and wall boundary layers 
with streamwise pressure gradient and wall injection; the predictions span both natural transition and 
laminarisation. Although complete agreement with experiment is not yet achieved in every case, it is argued 
that only a turbulence model of (at least) this level of complexity will permit a universal modelling of the 

near-wall turbulence structures commonly found in thermal power equipment 

Cl, c2, Cfl’ 

CJ-9 
H, 

k 
K 
M, 
R, 
Re, 

NOMENCLATURE 

constants or functions of turbu- 
lence Reynolds number appearing 
in turbulence model ; 
skin friction coefficient ; 
shape factor (displacement thick- 
ness/momentum thickness) ; 
turbulence kinetic energy ; 
acceleration parameter ; 
(wall suction velocity)/uc ; 
radius of pipe ; 
pipe flow Reynolds number based 
on bulk velocity and pipe 
diameter ; 

kinematic viscosity ; 
density ; 
molecular Prandtl number ; 
turbulent Prandtl number (4 may 
stand for /c, .s, h) ; 
shear stress. 

Subscripts 

G, 
k, E, h, 

T 

turbulence Reynolds number ; 
mean velocity in x, y, z directions ; 
fluctuating components of velocity 
in x, y, z directions ; 
Cartesian coordinates denoting 
streamwise, cross-stream and 

overbars, 

denotes free-stream value ; 
pertaining of diffusional transport 
of turbulence energy, dissipation 
rate or enthalpy respectively ; 
denotes equivalent turbulent 
value ; 
signify space or time averages as 
appropriate. 

ONE OF the 

1. INTRODUcIlON 

most important and least under- 
lateral directions respectively ; stood aspects of turbulence is that which occurs 
kinematic energy dissipation rate ; when the local Reynolds number of the turbu- 
thermal conductivity,/specitic heat lence is low. For the effective design of many 
at constant pressure; thermal process components depends crucially 
dynamic viscosity ; on recognising and accounting for the role of the 
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turbulent motions immediately adjacent to a 
wall. The presence of the wall ensures that over 
a finite region of the flow, however thin, the 
turbulence Reynolds number is low enough for 
molecular viscosity to influence directly the 
processes of production, destruction and trans- 
port of turbulence. And these viscous inter- 
actions in turn render the problem of creating a 
general mathematical model of the turbulence 
at least an order of magnitude more difficult 
than for high-Reynolds-number flows. 

Notwithstanding the above remarks, it is 
possible, under favourable circumstances, to 
escape the inherent complexities of low- 
Reynolds-number turbulence. For if gradients 
in static pressure parallel to the surface are small 
and if mass injection through the wall and 
property gradients in the fluid are, likewise, 
small or absent, both mean and turbulence 
quantities are nearly-universal functions of the 
normal-distance Reynolds number, yf. Thus, 
the near-wall effective viscosity distribution 
deduced from experimental data of one flow 
may be employed to calculate mean velocity 
profiles in many others. Patankar and Spalding 
[l] were among the first to exploit this compara- 
tive universality of the near wall region. They 
used a version of Van Driest’s [2] formula for 
the variation of mixing length near the wall to 
obtain satisfactory predictions of a variety of 
boundary layer flows. 

Not all boundary layers, however, possess a 
turbulence structure near the wall which con- 
forms with this “universal” pattern. It has been 
well established that severe streamwise pressure 
gradients and surface mass fluxes may sub- 
stantially disturb the near wall flow [3-51, as 
may likewise steep property gradients or the 
influences of buoyancy, centrifugal or Coriolis 
forces [ 6-81. A number of workers, including the 
present authors, have attempted to account for 
the effects of the first two of the above para- 
meters within the framework of the Prandtl 
mixing-length hypothesis. Often [9-121 the 
mixing-length distribution is chosen to be a 
function of dimensionless pressure-gradient and/ 

or mass-transfer parameters; and in this way 
one may certainly improve upon the accuracy of 
prediction generated by Van Driest’s original 
proposal. 

We have nevertheless now abandoned the 
above approach, for we came to believe that 
completely successful prediction of non- 
equilibrium processes in the low-Reynolds- 
number flow could not be achieved with a 
transport hypothesis based so firmly on local 
equilibrium notions. If the length scale of turbu- 
lence near the wall is not the same in a strongly 
accelerated flow as in a zero-pressure-gradient 
boundary layer then it is because the turbulence 
generation and decay rates are affected by 
convective and diffusive transport processes ; 
and these are not the same in the two flows. 
Thus one ought really to determine the length 
scale from a transport equation either for the 
length scale itself or for some other equivalent 
variable. 

In fact the use of turbulence models in which 
one or more turbulence quantities are found from 
the solution of approximated transport equa- 
tions is now becoming quite commonplace. 
Launder and Spalding [ 131 have made a survey 
of recent proposals and have argued that models 
of the two-equation kind are especially to be 
recommended for boundary-layer flow. The 
solution of these equations provides the length 
and time scales, I and t, of the active part of the 
turbulent motion; the turbulent stress is then 
obtained by multiplying the local mean rate of 
strain by the turbulent viscosity of the fluid, 
pLT, where 

/4r = cplt (1.1) 

and, at high Reynolds numbers, CL is a constant. 
There are a number of variants of equation (1.1). 
The turbulence kinetic energy equation is, with- 
out exception, one of those employed in two- 
equation turbulence models. Thus equation 
(1.1) is more usually written as 

p* 3 c;pk+l, (1.2) 

k denoting the turbulence energy. Moreover, it 
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turns out that the length scale itself is not a 
particularly well-conditioned variable to employ 
as the dependent variable of the second equation. 
Instead workers have selected variables of the 
form k‘V’ where a and b are constants. For 
example Ng and Spalding [14] and Rodi and 
Spalding [15] have chosen the product kl while 
Harlow and Nakayama [16] proposed an 
equation for the turbulence energy dissipation 
rate, E, which may be interpreted as proportional 
to k*/l. With the latter variable, equation (1.2) 
may be recast 

j+ = c,pk=/&. (1.3) 

It is the last of the above forms that will be 
employed here. 

In a recent paper [17] the authors have pro- 
posed a two-equation model which they applied 
to the prediction of convective heat transfer 
processes in strongly accelerated boundary 
layers. The outcome was encouraging for the 
predictions faithfully reproduced the measured 
depressions in Stanton number in regions of 
high acceleration. Here we report the outcome 
of extending the application of the model to 
flows with mass transfer and to flow in pipes at 
low Reynolds number and at high Prandtl 
number. The model, together with some ex- 
planation for the form chosen, is given in section 
2. Section 3 presents the outcome of the pre- 
dictions and discusses the relative successes and 
shortcomings of the model in its present form ; 
finally in section 4 we mention further extensions 
and refinements of the model. 

2. THE MODEL OF TURBULENCE 

The hydrodynamic predictions presented in 
section 3 have been obtained from the solution 
of the following system of differential and 
auxiliary equations : 

Streamwise momentum 

Z%rbulent viscosity hypothesis 

- pn = pT t!f z (c,pk=/e) !!f 
aY aY 

(2.2) 

Turbulence kinetic energy 

ak dk a 
Pu$Pv-&=ay 

au 2 
+pT & 

0 
(2.3) 

Turbulence “dissipation” rate 

aE a& a 
Puz+P”y=y 

E at4 2 
+ cl;fiT & 

0 

C2PE2 -_ 
k 

+ 2.()E azu = 
P ( > a$ . (2.4) 

In the above set, equations (2.1) and (2.2) are 
well known and, with the exception of the last 
term appearing in it, so is the simulated form of 
the turbulence energy equation, equation (2.3). 
The reasons for including this extra term are 
computational rather than physical; for, in 
solving the E equation, there are decisive 
advantages, in letting E go to zero at the wall. 
However, the turbulence dissipation rate is not 
zero there; it is in fact equal to 

So, we have introduced the extra term in equation 
(2.3) which is equal to the dissipation rate in the 
immediate vicinity of the surface (see [17]) and 
which is negligible in regions where the Reynolds 
number is high. 

There is perhaps less familiarity with the 
equation for E than with that for turbulence 
energy. An exact equation for this quantity may 
readily be derived from the Navier-Stokes 
equations [ 163 but then the unknown turbulence 
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correlations in that equation must be approxi- quantity as the parameter (pk2!&p). The func- 
mated in terms of known or calculable quanti- tional denendences chosen are : 
ties. It is the approximated form which appears 
as equation (2.4). In form it parallels very closely 
the k-equation : each equation adopts the 
assumption that diffusional transport proceeds 
at a rate proportional to the product of the 
turbulent viscosity and the gradient of the 
property in question (the terms o, and ~~ thus 
have the significance of turbulent Prandtl 
numbers). Moreover the principal generation 
and decay terms (the former arising through 
mean velocity gradients) in the two equations are 
likewise similar. The last term in the equation 
is one that we found necessary to include in 
order that the distribution of kinetic energy 
within the viscosity-affected region should be in 
reasonable accord with experiment. Its presence 
is one of the less satisfactory features of the 
present model and it is likely that future re- 
search will lead to its replacement by something 
better. 

To complete the specification of the model 
the quantities cpr ci, c2, ok and CJ~ must be pre- 
scribed. At high Reynolds numbers these are all 
supposed to take on the constant values given 
in Table 1. Hanjalic and Launder [27] have 

c, = 0.09 exp ( - 2.5/(1 + R,/50)) (2.5) 

c2 = 2.0 (1.0 - 0.3 exp ( - R$)). (2.6) 

The parabolic partial differential equations (2.1), 
(2.3) and (2.4) (or their equivalents for axisym- 
metric pipe flows) have been solved by means of 
an adapted version of the Patankar-Spalding 
[l] finite-difference procedure in which 97 
cross-stream intervals were employed, approxi- 
mately half of which were concentrated in the 
10 per cent of the boundary layer closest to the 
wall. At the wall both k and E were set to zero. In 
cases where the outer boundary of the flow was 
an irrotational fluid stream the values of k and 
E there were determined from the degenerate 
forms of (2.3) and (2.4) which result when 
gradients with respect to y are set to zero. For 
pipe flow calculations, the gradients of k and E 
were set to zero at the axis. 

Provided the density is uniform, the above 
paragraphs provide a complete specification of 
the hydrodynamic field. When, however, the 
thermal field is of interest, the enthalpy con- 
servation equation must also be solved. For 
fluids of uniform specific heat, the two-dimen- 

Table 1. High Reynolds number values of empirical constants 
sional boundary-layer form of the equation may 
be written : ____ 

G Cl c2 bt u, 

0.09 1.45 2.0 1-o 1.3 

discussed in some detail the basis for choosing 
these constants. Here therefore it may suffice to 
remark that: cI1 is fixed by the requirement that 
in a constant-stress layer T,Jpk = cz; c2 is 

determined by reference to the decay of grid 
turbulence; and c1 is chosen so that the von 
Karman constant equals O-42. The diffusion 
coefficients ak and aE were fixed in [ 171 by 
computer optimisation. 

At low Reynolds numbers two of these, c,, and 
c2, become dependent upon the value of the tur- 
bulence Reynolds number, R, which we now 

where ;1 denotes the thermal conductivity 
divided by the specific heat at constant pressure. 
In consonance with equation (2.2), the turbu- 
lence correlation appearing in equation (2.7) is 
approximated as follows : 

(2.8) 

The term CJ,,, which is the turbulent Prandtl 
number for enthalpy transport, is assigned the 
value 0.9, independent of Reynolds numbers, 
for all the heat-transfer calculations presented 
below. 



3. COMPARISON OF PREDICTIONS WITH 
EXPERIMENT 

Comparison is made first with Laufer’s [18] 
data of fully-developed flow in a pipe at a Rey- 
nolds number, based on maximum velocity and 
pipe diameter, of 5 x 10: Here the Reynolds num- 
ber is so high that the viscosity-dependent region 
occupies barely 1 per cent of the width of the 
flow and the (total) shear stress within this 
region is sensibly uniform. These data are thus 
often regarded as providing a standard against 
which departures from normalcy in other low 
Reynolds number flows may be judged. 

It is seen from Fig. 1 that over the bulk of the 
flow and within the near-wall region the cal- 
culated mean velocity profile is in reasonably 
good agreement with the measurements. One 
flaw in the model, which will display its effect later 
as well, is that for values of y+ between about 
15 and 30 the predicted turbulent viscosity is 
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hi. 1. Profiles in high Re pipe flow. 
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somewhat too high and consequently the pre- 
dicted velocity at y+ = 34 is a little too low. The 
general appearance of the kinetic energy pre- 
dictions is again in general accord with the 
data, the agreement being particularly close for 
values of yf below 18. The measured energy 
peak is about 12 per cent higher than the pre- 
dicted and occurs further from the wall: how- 
ever, considering the uncertainties in the 
measurement of turbulence energy, this measure 
of agreement is probably satisfactory. 

For the above case, no particular credit can 
be claimed for the turbulence model* since the 
form of the viscosity-dependent terms appearing 
in it was largely determined by reference to these 
data and the very similar work of Klebanoff [ 191. 
We turn now, however, to the self-preserving 
flow which arises between converging plane 
walls, usually referred to as a sink flow. Here, 
the local Reynolds number, shape factor and 
friction coefficient of the boundary layer are 
constant from station to station, their values 
depending on the prevailing level of acceleration 
which is conveniently represented by the para- 
meter 

+$$ 
G . 

When the acceleration is large (K > 10e6) the 
low Reynolds number structure of this flow by 
no means conforms with Laufer’s data: the 
turbulent viscosity near the wall is diminished 
and consequently the viscous region is appreci- 
ably thicker than in high-Reynolds-number 
pipe flow. The effect is apparent in Fig. 2 which 
compares the predicted values of the shape factor, 
H, with measurements at various levels of 

* It is perhaps worth underlining the question of univer- 
sality, however. Precisely the same model has been employed 
here as was used in 1171 to predict Klebanoffs data of 
boundary layer in zero pressure gradient 1191. With the 
mixing-length model, however, the mixing length needs to 
be ascribed substantially different values in the outer 
regions of the two flows. It might also be remarked that the 
same two-equation model leads to good predictions of many 
free shear flows as well. 
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2.2 
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- - LAMINAR SOLUTION 

___ PREDICTION WITH 
k-E IlODEL 
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JONES AND LAUNDER 123) 
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FIG. 2. Sink flow turbulent boundary layers 

acceleration. The data show a progressive rise 
in the value of H towards that of the laminar 
sink-flow boundary layer as K is increased; this 
behaviour is mainly a consequence of the 
thickening of the viscous sublayer. The pre- 
dictions reasonably reproduce this measured 
variation. Moreover, for values of K greater than 
about 3.2 x 10m6 it turns out that the only 
solution to the set of equations presented in 
section 2 is the laminar one. That is, if one starts 
off the calculations in, say, zero pressure 
gradient, to let the turbulent boundary layer 
become well established, and then imposes a 
constant-K acceleration, the turbulence will 

2.0 

1 a I 

- - - - 

1 TLA:AR 
SOLUTION 

:: / \TlJRBULENT 

FIG. 3. Asymptotic suction boundary layers. 

undergo progressive and complete decay to a 
laminar flow. Experimental research has not 
yet succeeded in delineating precisely at what 
value of K degeneration to laminar flow does 
in fact ensue; but it is certainly close to the 
predicted value. 

Predictions of a class of flow which is closely 
related to the sink flow are shown in Fig. 3. They 
relate to asymptotic suction boundary layers and 
the level of the shape factor is shown as a func- 
tion of the wall-suction parameter, M. Only 
predictions are shown because we did not 
regard any of the available data of sucked 
boundary layers as being sufficiently close to the 
asymptotic state to make quantitative com- 
parison worthwhile. Here the main interest 
turns on the great sensitivity of the sublayer 
structure to the level of suction. For M = 

2.6 x 10m3 the shape factor is 1.2, a value 
typical of high-Reynolds-number flow yet at 
M = 2.8 x 10e3 the boundary layer is on the 
verge of decay to laminar. The results are con- 
sistent with the data of Simpson et al. [5] for 
M = 0903 which seem to show the boundary 
layer is decaying to laminar. 

We now return to the case of fully-developed 
pipe flow, only this time for low Reynolds 
numbers. In Fig. 4a comparison is drawn 



LOW-REYNOLDS-NUMBER PHENOMENA 1125 

TURBULENT 

I I 

102 103 104 
Re 

FIG. 4a. Low-Re pipe flow. 

between the friction factor measurements of 
Pate1 and Head [24] and those predicted by 
our turbulence model. For Reynolds numbers 
greater than 3 x lo3 the predicted values are 
within 2 per cent of the measured. However, 
while the measurements exhibit a shift from 
turbulent to laminar flow over the range of 
Reynolds numbers from 2.8 x lo3 to 2.0 x 103, 
the predicted flow remains turbulent down to a 
Reynolds number of 1.6 x 103, whereupon, if 
Re is further reduced, the flow promptly reverts 
to laminar. The equivalent comparisons for the 

t I I 

10 2 10 3 10' 
Re 

FIG. 4b. Low-Re channel flow. 

case of flow through a plane channel are pro- 
vided in Fig. 4b. Here the experimental data 
are those of Pate1 and Head [24] for Re 
< 2 x lo3 and those of Beavers et al. [29] for 
Re 2 25 x 103.* Again, excellent agreement 
between experiment and prediction is obtained 
in the fully turbulent regime but the calculated 
transition back to laminar flow occurs at too 
low a Reynolds number and too abruptly. 

We believe (as other workers have suggested) 
that the measured decrease in cr as the Reynolds 
number is lowered is associated with the flow 
being intermittently laminar and turbulent; it 
thus seems to us unlikely that the phenomenon 
will be adequately predicted with a steady state 
analysis such as we have made. 

An interesting feature of the pipe-flow pre- 
dictions emerges in Fig. 5 where velocity profiles 
in u+ - y+ co-ordinates are plotted. Figure 5a, 
which shows predicted profiles at three Reynolds 
numbers, indicates that there is no truly 
“universal” region. Even for a Reynolds number 
as high as 25000, viscous influences cause the 
effective slope of the semi-logarithmic region 
of the velocity profile to be distinctly higher than 
at very large Reynolds numbers.? This trend is 
certainly in agreement with the available experi- 
mental data. For example, the velocity profile 
of Kudva and Sesonske [28] at a Reynolds 
number of 6000 shown in Fig. 5b strongly 
supports the present predictions. These results 
certainly go some way towards explaining the 
very different values proposed by different wor- 
kers for the two experimentally determined con- 
stants in the semi-logarithmic law. Moreover, 
they show why friction-factor formulae based on 

* The data of [241 obey the relation c, = 0.0376 RF* for 
Re > 2 x 103. This result is substantially at variance with 
the extensive data of Beavers et al. Since these latter measure- 
ments were extensive and obtained in several different 
configurations it seems likely that the data of Pate1 and 
Head are in error. 

t In this class of flow convective transport is zero. The 
behaviour of the predictions is thus solely attributable to 
diffusive processes. 
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FIG. Sa. Dependence of U+ - y+ profiles on Re. 

the notion of a “universal” velocity profile give 
too high values of friction factor at low Reynolds 
numbers. 

The remaining predictions are concerned with 
heat transfer. Figure 6 compares the Stanton 
number in fully-developed pipe flow with the 
experimental data collected by Deissler [25]. It 

is seen that agreement is generally satisfactory 
though at very high Prandtl numbers the 
predicted Stanton number is somewhat too 
high. 

The result provides support for our suggestion 
that the model generates turbulent viscosities 
which are rather too high in the vicinity of the 

KUDVA ET AL 128) 

FIG. Sb. Pipe-flow velocity profile; Re = 600@ 
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FIG. 6. Heat transfer at high Prandtl number. 

wall (for, as ~7 is progressively increased, the 
turbulence structure immediately adjacent to 
the wall becomes increasingly dominant in 
determining the level of Stanton number). 

All the flows considered so far have been self 
preserving ones. For the final comparisons, 
therefore, we turn to two flows where abrupt 
changes occur in the streamwise direction. The 
data are some of those obtained by Keamey et 
al. [26] involving step changes in the level of 
surface blowing rates and in streamwise pressure 
gradient. The measured and predicted distribu- 
tions of Stanton number along the plate are 

003 

002 
St F\ 

,001 - ks+iq&_ 
0 I I I I I I I 

1 2 3 x ,,t: 7 s 6 

.oo 

1 
3 0 

004 

r-l I th:;: In 

2 4 6 8 0 2 4 6 B 
x Ift) x itt ) 

FIG. 7. Heat transfer with blowing and acceleration, Keamey 
et al. run 102469-l. 

shown in Figs. 7 and 8. The general accord 
between experiment and prediction is quite 
good, although some detailed discrepancies 
remain. It is not yet clear to us whether, in Fig. 7, 
the large difference between the measured and 
predicted Stanton number at x = 3.2 ft is a 
shortcoming of the measurements or the pre- 
dictions. In Fig. 8, however, we are sure that the 
model is at fault in predicting too slow an increase 
in Stanton number downstream from the end 
of the acceleration (the same discrepancy has 
been found in [17j for flows without mass 
transfer). 

002. 
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St 0 
0 

001 

IT 

0 

O/--1 
x lftl 

_:;-j , , 

2 4 6 

Kx;o!kfl, , L 

2 6 8 

Xlftl X4(,,, 

FIG. 8. Heat transfer with blowing and acceleration, Kearney 
et al. run 11369-2. 
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4. CONCLUDING REMARKS 

The foregoing section has presented predic- 
tions of a number of wall boundary layers for 
cases where the region of low turbulence 
Reynolds numbers differs from that found in 
high-Reynolds-number pipe flows. Generally 
the two-equation model of turbulence employed 
has acquitted itself well, particularly considering 
that the disposable functions of turbulence 
Reynolds number appearing in it were chosen 
to secure agreement with standard high- 
Reynolds-number flows. The prediction scheme 
thus has some claim to be regarded as funda- 
mental. 

Of course, agreement with experimental data 
is yet by no means perfect and perhaps some of 
the recent mixing-length proposals yield nearly 
as good results. But mixing-length models make 
rather direct appeal to experimental data. 
Moreover, in many of the interesting low- 
Reynolds-number turbulence phenomena we 
must account for free-stream turbulence and 
significant body-force terms, besides those para- 
meters considered here. It does not look fruitful 
tous to attempt to encompass all these effects 
within the framework of the mixing-length 
hypothesis. 

Finally it is appropriate to mention extensions 
and improvements of the model. We have 
already mentioned that the cfl function needs 
adjustment and there are probably similar 
refinements that can be performed on the other 
viscosity dependent terms. A further and more 
radical refinement would be the provision of a 
transport equation for the turbulent shear 
stress; this would replace the present turbulent 
viscosity formula, equation (2.2), in the mean 
momentum equation. The equation would 
contain k and E as unknowns so the transport 
equations for these variables would also need 
to be retained. A model of this kind has already 
been tested [27] but it is applicable only to 
regions where the turbulence is not directly 
affected by viscosity. Its extension to regions of 
low Reynolds number would seem profitable. 
It is our impression that such a model would 

provide more reliable predictions than the 
present one of transition phenomena in turbu- 
lence especially in flows where the structure 
undergoes rapid changes in the streamwise 
direction. 
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LE CALCUL DES PHENOMENES A BAS NOMBRE DE REYNOLDS A L’AIDE DUN MODELE 
A DEUX EQUATIONS DE TURBULENCE 

R&srun&L’article prbsente des estimations numtriques de divers ecoulements turbulents dans lesquels la 
structure de la soustouche visqueuse exerce une influence notable sur 1’6coulement. On a employ& un 
modble de turbulence oti I’tnergie de turbulence et son taux de dissipation sont calcules a l’aide des equa- 
tions de transport resolues simultanement avec les equations de conservation pour l’~o&ment moyen. 

Les tcoulements consider&s comprennent lea tcoulements isothermes en conduite a faibles nombres de 
Reynolds, les couches limites de paroi avec un gradient de pression dans le sens de I’tcoulement et l’injection 
a la paroi. Les estimations concement a la fois la transition naturelle et la laminarisation. Bien qu’un 
accord complet avec l’experience ne soit pas encore obtenu on prouve qu’un tel modble de turbulence avec 
ce niveau minimal de complexite permettra settlement une modelisation universelle des structures de 

turbulence prb de la paroi communement realistes dans les tquipements thermiques. 

DIE BERECHNUNG VON STRBMUNGEN NIEDRIGER REYNOLDSZAHLEN MIT EINEM 
ZWEI-GLEICHUNGS-TURBULENZ-MODELL 

Zuaammenfassrmg-Die Veroffentlichung bringt numerische Berechnungen tlber verschiedene turbulente 
Striimungen, in denen die Struktur der viskosen Unterschicht betrichtlichen Einfluss auf die Striimung 
austlbt. Im zugrundegelegten Turbulenzmodell wird die Turbulenzenergie und deren Dissipationsanteil 
iiber die Transportgleichtmgen berechnet und zusammen mit den Erhaltungsgleichungen ftlr die Haupt- 
striimung gel&t. Die betrachteten Striimungen umfassen isotherme Rohrstromungen mit niedrigen 
Reynolds-Zahlen und Wandgrenzschichten mit Druckgradienten in Str(imungsrichtung und Wandein- 
spritzung; die Voraussagen umspannen nattirlichen Ubergang und Laminarisation. 

Obwohl vollst&tdigeUbereinstimmung mit dem Experiment noch nicht in jedem Fall erreicht ist, wird 
dargelegt, dass nur em Turbulenzmodell von (mindestens) diesem Verwicklungsniveau em allgemeines 
Erfassen der Turbulenzstrukturen nahe der Wand, wie sie gewohnlich bei therm&hen Problemen auftreten, 

erlaubt. 
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PACY%T IIPO~ECCOU HEPEHOCA IIPki HKSKkIX :ziHAclEHMHS LIMCJI.\ 
PE6tHOJIbflCz4 HA OCHOHE MOAIGIM TYPBYiIEHTHOCTM. COCTOFHi[13~ 

M3 nFiY S YPABHEHklR 

_hHoTaqmi--H p36OTe IIpefiCTatLZeHbI ‘1MCJIeHHbII ~,eIIIeHHH RJIfl ~,a:JJIllYHbIX CfiBIII‘OLlbIX 

Typ6yJIeHTHbIX TeYeHHi, B KOTOphIX CTpJ’KTypa BfI3KOI’O IIOHCJIOFI OKa3bIBaeT CymeCTBeHHOe 

BJIHRHWe ,I3 TeqeHlle. 13 KaqeCTRe MOAeJIkl TypLyneHTHOCTI4 IlpllHIlMaeTCcI MOfie.Zb, i\JIfl 

KOTOpOih 3HepIWJ-J Typ6y.ileHTHOr0 ;~HPIHteHWi II (‘KOpOcTb e& ~I~CCMIIal~K11 pacC’IHTbIBaIOTCR Ha 

OCHOBP COOTBeTCTByIO~PIX YpaBlfeHI’Iti IIepeHOCa, IfoToprde peIIIaI0Tcn romffxTI10 (’ ypars- 

HeHARMM RJIfI OCpeAHeHHOrO TRYHHHR. 

BbIJIM HCCJIeROBaHbI kl3OTepMWleCKMe Te’IeHMR B Tpy6aX Il~‘M HH3KHX YHCJIaX ~‘eliHOJIbA[ca 

II B IIOI-paH&lYHbIX CJIORX C IIoJIo?KHTe JIbHbIM I-paAIleHTOM AaBJIeHHR Ha IIpOHHI(aeMOti CTeHKe. 

PaCCWTbIBaJICH KaK IIepeXOJ[, TaK II naMnHapH3aqm. Axiom ewe He B KaxcnoM cnyqae 

AOCTHI-HyTO IIOZIHOe COOTBeTCTBIle C 3KCIIepPlMeHTOM) OAHaKO ,JOKa3aHO, YTO TOJIbKO MOAeJIb 

Typ6yJIeHTHOCTH TaKOti CJIOX(HOCTM IIORBOJILlT yHHBepCanbHOe MO~eJIPIpOBaHI4e CTpyKTypbI 

IIpMCTeHHbIX TypAyJIeHTHbIX TeWHilii, 06bIYHO 06HapyxtHBaeMbIX B TeIIJIO3HepreTWleCK~IX 

yCTaHOBKaX. 


